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Abstract

Treatment of (hetero)aryl halides with 2-(1-alkynyl)benzoic acids or (Z)-2-en-4-ynoic acids in the pre-
sence of K2CO3 and a catalytic amount of Pd(PPh3)4 provides reaction mixtures in which stereode®ned
3-[(1,1-unsymetrically disubstituted)methylidene]isobenzofuran-1(3H)-ones and stereode®ned 5-[(1,1-unsym-
metrically disubstituted)methylidene]furan-2(5H)-ones, respectively, are the major products. # 2000
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In recent years considerable attention has been devoted to the synthesis of natural and unnatural
oxygen-containing heterocycles by protocols which involve transition metal-catalyzed intra-
molecular addition reactions of carboxylic acids to alkynes.1

As part of our ongoing interest in this ®eld,2 we recently described a new and e�cient proce-
dure for the regioselective synthesis of natural and unnatural (Z)-3-(1-alkylidene)isobenzofuran-
1(3H)-ones 2 and 3-substituted isocoumarins 3, which involves the transition metal-catalyzed
cyclization reaction of readily prepared 2-(1-alkynyl)benzoic acids 1 (Scheme 1).2f

More recently, in a continuation of these investigations, we found that treatment of 2-(1-alkynyl)-
benzoic acids of general formula 42f with 1.2 equiv. of (hetero)aryl halides 5 in degassed acetonitrile
at 70�C under an argon atmosphere, in the presence of 4 equiv. of K2CO3 and 5 mol% Pd(PPh3)4,
provides mixtures of 3-substituted 4-(hetero)arylisocoumarins 63 and stereoisomerically pure 3-[(1,1-
unsymmetrically disubstituted)methylidene]isobenzofuran-1(3H)-ones 7 in high yields, in which
these last compounds are the major products (Table 1).4
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Compounds 7 were separated from the corresponding regioisomers 6 by MPLC on silica gel
and were di�erentiated from these isocoumarins on the basis of their IR spectra. In fact, com-
pounds 7 displayed a carbonyl absorption band at 1765±1778 cm^1, whereas in compounds 6 the
carbonyl absorption frequency was observed at 1722±1724 cm^1. On the other hand, the stereo-
chemistry of compounds 7 was assigned by NOESY experiments.
As shown in Table 1, this Pd-catalyzed process gave compounds 7 in moderate to good yields

and its regioselectivity proved to be higher when the carboxylic acid, which was used as a starting
material, was a 2-[1-(aryl)ethynyl]benzoic acid such as 4b. Nevertheless, a typical 2-(1-alkynyl)-
benzoic acid bearing a substituent in the 3-position such as compound 1a failed to undergo this
Pd-catalyzed reaction with (hetero)aryl halides.

Table 1

Palladium-catalyzed synthesis of compounds 6 and 7(a)

Scheme 1.
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It must also be noted that, unlike that recently reported for the Pd-catalyzed cyclization reaction
of 1,2-allenic carboxylic acids with aryl halides,5 we observed that the presence of catalytic
amounts of Ag2CO3 did not a�ect the Pd-catalyzed reaction of compounds 4 with (hetero)aryl
halides 5. In fact, the regioselectivity and the yields of the reactions performed in the presence of 5
mol% Pd(PPh3)4 and 5 mol% Ag2CO3 were found to be very similar to those observed for the
same reactions which were carried out in the absence of this silver salt.
As far as the mechanism of this Pd-catalyzed process is concerned, on the basis of previous

work on Pd-catalyzed reactions between aryl halides and carboxylic acids which contain an
alkynyl moiety2a,2c,6 we can propose that it involves the following reaction sequence: (1) oxidative
addition of the (hetero)aryl halide 5 to Pd(0); (2) coordination of the so formed Pd(II) complex to
the carboxylate anion derived from 4; (3) intramolecular oxypalladation of the resulting complex
8; and (4) reductive elimination of Pd(0) and compounds 6 and 7.

We also found that a process which was similar to that employed for the synthesis of com-
pounds 6 and 7 occurred when easily prepared (Z)-2-en-4-ynoic acids 97 were reacted with (hetero)-
aryl halides 5 in acetonitrile at 70±85�C in the presence of 4 equiv. of K2CO3 and a catalytic quantity
of Pd(PPh3)4. In fact, in the case of (Z)-2-alken-4-ynoic acids such as 9a (entries 1 and 2, Table 2)
these reactions provided, although in modest yields, mixtures of 6-substituted 5-aryl-2H-pyran-2-ones

Table 2

Palladium-catalyzed synthesis of compounds 10 and 11 and 12(a)
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10, and stereode®ned 5-[(1,1-unsymmetrically disubstituted)methylidene]furan-2(5H)-ones 11, in
which these last compounds, which were isolated as single stereoisomers, were the major products.
On the other hand, the Pd-catalyzed reaction between aryl halide 5c and a typical (Z)-5-aryl-2-
buten-4-ynoic acid, i.e. 9b, gave a mixture in which the stereoisomerically pure 5-ylidenefuran-
2(5H)-one 11c and the 6-substituted 2-pyrone 12b were the sole reaction products (entry 3, Table 2).
These compounds were isolated in 26 and 30% yield, respectively. Interestingly, a 6-substituted
2-pyrone, which derived from the Pd-catalyzed heteroannulation reaction of the corresponding
(Z)-2-en-4-ynoic acid, was also obtained from the Pd-catalyzed reaction between 9a and 5e (entry 1,
Table 2).
The products of the Pd-catalyzed coupling reactions of (Z)-2-en-4-ynoic acids 9 with (hetero)-

aryl halides were separated by MPLC on silica gel and well di�erentiated by NMR analysis.8 In
fact, either in the 5,6-disubstituted 2H-pyran-2-ones 10 or in compounds 12 the value of the
3JH3ÿH4 coupling constant was in the range 9.4±10.0 Hz,9 whereas stereode®ned 5-ylidenefuran-
2(5H)-ones 11 displayed values of the 3JH2ÿH3 coupling constant in the range 5.3±5.9 Hz.10 On the
other hand, the stereochemistry of these last compounds was assigned by NOESY experiments.
In conclusion, a useful and simple protocol for the Pd-catalyzed synthesis either of stereo-

de®ned 3-[(1,1-unsymmetrically disubstituted)methylidene]isobenzofuran-1(3H)-ones or stereo-
de®ned 5-[(1,1-unsymmetrically disubstituted)methylidene]furan-2(5H)-ones has been developed.
Studies are in progress on the development of a new and e�cient procedure for selective synthesis
of the regioisomers of these compounds, i.e. 3,4-unsymmetrically disubstituted isocoumarins 6
and 5,6-unsymmetrically disubstituted 2H-pyran-2-ones 10, respectively.
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